RNA-seq transcriptome analysis of the immature seeds of two Brassica napus lines with extremely different thousand-seed weight to identify the candidate genes related to seed weight

نویسندگان

  • Xinxin Geng
  • Na Dong
  • Yuquan Wang
  • Gan Li
  • Lijun Wang
  • Xuejiao Guo
  • Jiabing Li
  • Zhaopu Wen
  • Wenhui Wei
چکیده

Brassica napus is an important oilseed crop worldwide. Although seed weight is the main determinant of seed yield, few studies have focused on the molecular mechanisms that regulate seed weight in B. napus. In this study, the immature seeds of G-42 and 7-9, two B. napus doubled haploid (DH) lines with extremely different thousand-seed weight (TSW), were selected for a transcriptome analysis to determine the regulatory mechanisms underlying seed weight at the whole gene expression level and to identify candidate genes related to seed weight. A total of 2,251 new genes and 2,205 differentially expressed genes (DEGs) were obtained via RNA-seq (RNA sequencing). Among these genes, 1,747 (77.61%) new genes and 2020 (91.61%) DEGs were successfully annotated. Of these DEGs, 1,118 were up-regulated and 1,087 were down-regulated in the large-seed line. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysis indicated that 15 DEGs were involved in ubiquitin-mediated proteolysis and proteasome pathways, which might participate in regulating seed weight. The Gene Ontology (GO) database indicated that 222 DEGs were associated with the biological process or molecular function categories related to seed weight, such as cell division, cell size and cell cycle regulation, seed development, nutrient reservoir activity, and proteasome-mediated ubiquitin-dependent protein catabolic processes. Moreover, 50 DEGs encoding key enzymes or proteins were identified that likely participate in regulating seed weight. A DEG (GSBRNA2T00037121001) identified by the transcriptome analysis was also previously identified in a quantitative trait locus (QTL) region for seed weight via SLAF-seq (Specific Locus Amplified Fragment sequencing). Finally, the expression of 10 DEGs with putative roles in seed weight and the expression of the DEG GSBRNA2T00037121001 were confirmed by a quantitative real-time reverse transcription PCR (qRT-PCR) analysis, and the results were consistent with the RNA sequencing data. This work has provided new insights on the molecular mechanisms underlying seed weight-related biosynthesis and has laid a solid foundation for further improvements to the seed yield of oil crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Identification of Candidate Genes for Seed Weight Using the SLAF-Seq Method in Brassica napus

Seed weight is a critical and direct trait for oilseed crop seed yield. Understanding its genetic mechanism is of great importance for yield improvement in Brassica napus breeding. Two hundred and fifty doubled haploid lines derived by microspore culture were developed from a cross between a large-seed line G-42 and a small-seed line 7-9. According to the 1000-seed weight (TSW) data, the indivi...

متن کامل

Identifying Conserved and Novel MicroRNAs in Developing Seeds of Brassica napus Using Deep Sequencing

MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the...

متن کامل

Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus

Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days afte...

متن کامل

Estimation of Combining Ability and Gene Action for Agro-Morphological Characters of Rapeseed (Brassica Napus L.) Using Line×Tester Mating Design

Combining ability effects were estimated for different agronomic characters in line × tester crossing program comprising 21 hybrids produced by crossing 7 lines and 3 testers. Parents and hybrids differed significantly for general combining ability (GCA) and specific combining ability (SCA) effects, respectively. The variance due to GCA and SCA showed that gene action was predominantly additive...

متن کامل

Estimation of Combining Ability and Gene Action for Agro-Morphological Characters of Rapeseed (Brassica Napus L.) Using Line×Tester Mating Design

Combining ability effects were estimated for different agronomic characters in line × tester crossing program comprising 21 hybrids produced by crossing 7 lines and 3 testers. Parents and hybrids differed significantly for general combining ability (GCA) and specific combining ability (SCA) effects, respectively. The variance due to GCA and SCA showed that gene action was predominantly additive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018